The details below are for those interested in how geex is organized. It is not necessary for using geex.
The design of geex
starts with the key to M-estimation,
the estimating function:
ψ(Oi, θ).
geex
composes ψ with two R functions: the “outer”
estFUN
and the “inner” psiFUN
. In pseudocode,
ψ(Oi, θ)=:
estFUN <- function(O_i){
psiFUN <- function(theta){
psi(O_i, theta)
}
return(psiFUN)
}
The reason for composing the ψ function in this way is that in order to do estimation (finding roots) and inference (computing the empirical sandwich variance estimator), ψ needs to be function of θ. M-estimation theory gives the following instructions:
With θ̂ in hand, the
quantity Bi is simple to
compute. The computational challenges of M-estimation, then, are finding
roots of Gm and
calculating the derivative Ai. By composing
ψ of two functions in
geex
, one can first do all the manipulations of Oi (data) that
are independent of θ. In a
sense, estFUN
“fixes” the data so that numerical routines
only need deal with θ in
psiFUN
.
Before describing the mechanics of how geex
finding
roots of Gm and computes
derivatives of ψ, let’s look
at the m_estimation_basis
S4
object which
forms the basis of all computations in geex
.
An m_estimation_basis
object, at a minimum needs two
objects: an estFUN
and a data.frame
. Let’s use
a simple estFUN
that estimates the mean and variance of
Y1
in the geexex
dataset.
library(geex)
library(dplyr)
myee <- function(data){
Y1 <- data$Y1
function(theta){
c(Y1 - theta[1],
(Y1 - theta[1])^2 - theta[2])
}
}
Now we can create a basis:
And look at what this object contains:
## [1] ".data" ".units" ".weights" ".psiFUN_list" ".GFUN"
## [6] ".control" ".estFUN" ".outer_args" ".inner_args"
Two slots are worth examining. First, .psiFUN_list
is a
list
of function
s:
## $`1`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <environment: 0x55909c0d0588>
##
## $`2`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x55909c0d3078>
This object is essentially equivalent to:
From this list of functions, we can compute Ai, and by summing across the list, form Gm. The latter is found in:
## function (theta)
## {
## psii <- lapply(psi_list, function(psi) {
## do.call(psi, args = append(list(theta = theta), [email protected]_args))
## })
## compute_sum_of_list(psii, [email protected])
## }
## <environment: 0x55909d2443a8>
Now that we have Gm as a function
of theta
, we can found its roots using a root-finding
algorithm such as rootSolve::multiroot
:
## $root
## [1] 5.044563 10.041239
##
## $f.root
## [1] -2.131628e-14 4.654055e-13
##
## $iter
## [1] 4
##
## $estim.precis
## [1] 2.433609e-13
Within geex
this is done with the
estimate_GFUN_roots
function. To illustrate, I first need
to update the .control
slot in mybasis
with
starting values for multiroot
.
mycontrol <- new('geex_control', .root = setup_root_control(start = c(1, 1)))
mybasis@.control <- mycontrol
roots <- mybasis %>%
estimate_GFUN_roots()
roots
## $root
## [1] 5.044563 10.041239
##
## $f.root
## [1] -2.131628e-14 -2.238210e-13
##
## $iter
## [1] 4
##
## $estim.precis
## [1] 1.225686e-13
Note that is bad form to assign S4
slot with
someS4object@aslot <- something
, but I do so here
because I have not created a generic function for setting the
.control
slot.
In the last section, we found θ̂, which we now use to compute the Ai and Bi matrices.
geex
uses the numDeriv::jacobian
function
to numerically evaluate derivatives. For example, A1 = −(∂ψ(O1, θ)/∂θ)|θ = θ̂
for this example is:
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -2.752514 1
geex
performs this operation for each i = 1, …, m to yield a list
of Ai
matrices. Then summing across this list yields A = ∑iAi.
The estimate_sandwich_matrices
function computes the list
of Ai,
Bi and
A and B:
mats <- mybasis %>%
estimate_sandwich_matrices(.theta = roots$root)
# Compare to the numDeriv computation above
grab_bread_list(mats)[[1]]
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -2.752514 1
Finally, computing Σ̂ = A−1B(A−1)⊺
is accomplished with the compute_sigma
function.
## [,1] [,2]
## [1,] 0.10041239 0.03667969
## [2,] 0.03667969 2.49219638
m_estimate
All of the operations described above are wrapped and packaged in the
m_estimate
function:
## An object of class "geex"
## Slot "call":
## m_estimate(estFUN = myee, data = geexex, root_control = setup_root_control(start = c(0,
## 0)))
##
## Slot "basis":
## An object of class "m_estimation_basis"
## Slot ".data":
## Y1 Y2 X1 Y3 W1 Z1 X2
## 1 3.66830660 2.02817177 4.949316 16.345756 4.823768 8.921782 0
## 2 10.45245483 1.64329659 7.851962 25.687417 7.884845 13.909474 0
## 3 3.12341064 2.85262638 4.729075 16.108307 4.709346 9.014695 0
## 4 8.37150253 2.51336525 2.564395 10.579970 2.786091 6.733378 0
## 5 -0.83197489 3.01820300 4.782347 16.464013 4.811590 9.290492 0
## 6 3.39877632 0.97852092 5.335713 18.325769 5.415370 10.322199 0
## 7 1.89433086 1.43833173 1.386442 5.577536 1.240995 3.497873 0
## 8 3.52281395 0.98744392 3.453377 13.074664 3.632010 7.894598 0
## 9 9.96040583 -1.02081430 2.958662 10.050725 2.752347 5.612733 0
## 10 4.57026477 2.33235027 7.591370 24.414247 7.501404 13.027192 0
## 11 5.69037402 3.24051157 6.812940 22.528706 6.835412 12.309296 0
## 12 6.01840507 2.67134960 2.481492 9.540750 2.505561 5.818512 0
## 13 2.54186468 0.66996589 3.307246 11.720103 3.256837 6.759235 0
## 14 -0.71686038 1.14941969 2.366527 9.839421 2.551487 6.289631 0
## 15 3.67609826 0.21116926 6.308752 21.049635 6.339597 11.586507 0
## 16 5.51354425 3.23152191 2.280638 8.812598 2.273309 5.391641 0
## 17 9.07247997 1.66560033 2.872154 10.227607 2.774940 5.919377 0
## 18 3.97770523 1.03267790 4.361465 15.595252 4.489179 9.053054 0
## 19 3.78983596 2.87937035 3.573053 11.805345 3.344600 6.445765 0
## 20 11.46076273 1.74642131 5.556376 20.979426 6.133951 12.644862 0
## 21 1.90514658 0.48212421 7.752991 24.820884 7.643469 13.191397 0
## 22 6.69600961 1.97611674 6.030068 20.854263 6.221083 11.809162 0
## 23 2.66421207 2.02665947 4.213262 14.901747 4.278752 8.581854 0
## 24 6.66014272 2.16368120 2.923132 11.542799 3.116483 7.158102 0
## 25 -1.18104663 2.41000794 5.156830 16.656110 4.953235 8.920865 0
## 26 2.92500198 1.37263740 5.519839 18.121067 5.410226 9.841308 0
## 27 3.88083378 2.63691800 5.477283 17.711627 5.297228 9.495703 0
## 28 9.02982953 0.79806522 4.055430 14.397234 4.113166 8.314089 0
## 29 3.12172019 3.34654241 4.319714 13.801412 4.030281 7.321841 0
## 30 6.19158815 1.40123269 10.283894 33.098758 10.345663 17.672917 0
## 31 3.32882227 2.44220444 2.557841 9.582409 2.535063 5.745648 0
## 32 1.59847689 2.61352641 11.152742 37.215603 11.592086 20.486489 0
## 33 7.75618478 1.70090363 2.538047 9.476212 2.503565 5.669141 0
## 34 3.15921522 0.39941190 7.939765 25.708101 7.911967 13.798454 0
## 35 10.39273751 1.66053304 3.629295 12.197870 3.456791 6.753928 0
## 36 6.77228554 1.41869225 5.644317 18.711156 5.588868 10.244681 0
## 37 4.39629525 1.60963799 1.385403 6.339116 1.431130 4.261012 0
## 38 6.82219543 2.84551436 3.651563 13.372011 3.755894 7.894667 0
## 39 4.83938127 2.68472721 2.075987 9.293362 2.342337 6.179382 0
## 40 6.82448417 2.23771308 7.947636 26.813109 8.190186 14.891656 0
## 41 3.36629988 1.28937811 3.893624 13.579242 3.868217 7.738807 0
## 42 -3.54597542 4.61331896 4.399113 16.600543 4.749914 10.001873 0
## 43 5.62728767 0.37335265 2.019187 6.280784 1.574993 3.252004 0
## 44 7.64019560 0.39269371 10.182047 33.169007 10.337763 17.895937 0
## 45 1.07266235 2.34031745 4.471305 14.891632 4.340734 8.184674 0
## 46 0.54542518 4.72788771 5.445723 19.659399 5.776280 11.490815 0
## 47 3.25060929 1.67280996 5.030453 16.727920 4.939593 9.182240 0
## 48 2.93555501 0.74310325 7.586987 26.080025 7.916753 14.699546 0
## 49 6.67598396 1.56860189 9.452187 30.400340 9.463132 16.222060 0
## 50 5.53662175 4.54885325 8.141977 24.547274 7.672313 12.334309 0
## 51 9.13874582 1.22859200 5.623052 18.422092 5.511286 9.987515 1
## 52 11.61401290 1.49265765 5.066275 15.460228 4.631626 7.860815 1
## 53 4.92821273 1.72997742 2.174904 8.703576 2.219620 5.441220 1
## 54 4.90318672 2.74811656 1.373871 8.019078 1.848237 5.958272 1
## 55 6.00098760 2.66859381 4.252394 12.485257 3.684413 6.106666 1
## 56 3.65150186 1.54470134 1.844766 8.514763 2.089882 5.747614 1
## 57 4.54658518 0.07215478 6.257311 19.373108 5.907605 9.987141 1
## 58 4.60446834 3.88197707 7.640542 26.746499 8.096760 15.285686 1
## 59 6.05634729 0.75028887 3.400547 13.582939 3.745871 8.482119 1
## 60 5.55593474 1.51065503 3.879217 12.798800 3.669504 6.979974 1
## 61 4.03092200 2.21539129 5.044494 16.871488 4.978996 9.304746 1
## 62 5.23612553 2.42210867 3.724228 13.103840 3.707017 7.517498 1
## 63 4.29091253 0.77885172 3.209739 11.250332 3.115018 6.435724 1
## 64 8.17872107 2.31222782 3.503141 15.091380 4.148630 9.836670 1
## 65 5.02695115 2.88646213 3.588984 12.896787 3.621443 7.513311 1
## 66 2.48083883 2.47481069 2.572586 9.004733 2.394330 5.145854 1
## 67 3.99004087 2.86984135 2.321320 9.601955 2.480819 6.119975 1
## 68 2.23831135 1.11347620 7.354859 24.266268 7.405282 13.233980 1
## 69 5.81016858 1.87134447 1.780620 7.271942 1.763140 4.601012 1
## 70 8.38552575 3.09651049 2.438272 9.222328 2.415150 5.564919 1
## 71 7.52829625 2.51802955 4.870025 17.058979 4.982251 9.753941 1
## 72 5.80565410 2.39803318 6.107551 19.258297 5.841462 10.096971 1
## 73 4.63571743 3.06665941 3.068762 10.043868 2.778158 5.440724 1
## 74 6.15793650 1.55045992 8.069649 27.857468 8.481779 15.752995 1
## 75 4.78126024 2.62610198 2.564135 7.630308 2.048611 3.784106 1
## 76 -3.16739941 1.18116405 6.700594 22.114532 6.703782 12.063641 1
## 77 6.43347697 1.73648379 5.381833 17.057971 5.109951 8.985221 1
## 78 3.50959659 2.15457529 12.644899 40.205236 12.712534 21.237888 1
## 79 10.07323536 2.56844555 2.037142 9.119878 2.289255 6.064165 1
## 80 13.67440127 -0.66015968 5.883640 17.576515 5.365039 8.751055 1
## 81 0.04110863 3.13653254 7.093428 24.177106 7.317634 13.536964 1
## 82 7.35949555 2.42177278 4.873831 16.571498 4.861332 9.260751 1
## 83 5.49607715 3.35008260 8.291038 25.527766 7.954701 13.091208 1
## 84 2.90516885 3.10375689 4.051026 12.221867 3.568223 6.145328 1
## 85 7.48091201 2.64704611 7.689539 25.778200 7.866935 14.243891 1
## 86 7.83288634 2.17563581 4.933636 16.643004 4.894160 9.242550 1
## 87 4.62720660 2.65355779 5.774989 19.541334 5.829081 10.878851 1
## 88 3.81921320 1.93450970 4.483566 16.268060 4.687907 9.542711 1
## 89 0.65673908 2.64552217 2.739769 11.946482 3.171563 7.836829 1
## 90 2.50073977 2.36429404 5.286464 17.755621 5.260521 9.825925 1
## 91 4.06797383 2.84344157 3.701213 12.546517 3.561933 6.994698 1
## 92 3.99673254 1.32352113 5.795986 20.816259 6.153061 12.122280 1
## 93 8.81558134 1.60856710 4.883292 15.756919 4.660053 8.431981 1
## 94 3.93610997 2.40494064 7.172253 22.359187 6.882860 11.600808 1
## 95 12.58110379 0.89314130 3.340735 11.491910 3.208161 6.480807 1
## 96 3.28003669 1.61669959 7.262549 26.233329 7.873969 15.339506 1
## 97 11.30218798 2.29402025 1.940701 6.989609 1.732577 4.078556 1
## 98 5.64776480 3.79306067 5.958475 20.288944 6.061855 11.351232 1
## 99 0.65818837 2.81403217 4.432708 14.119440 4.138037 7.470379 1
## 100 7.30774920 0.67997560 3.283518 10.676520 2.990010 5.751243 1
## Y4 Y5
## 1 0.092739260 1
## 2 1.016727357 1
## 3 0.493990392 0
## 4 1.243224329 0
## 5 0.695205988 1
## 6 0.952201378 1
## 7 -0.343146465 0
## 8 1.159870423 0
## 9 -0.429393276 0
## 10 0.499274828 1
## 11 0.871180147 1
## 12 0.444423658 0
## 13 0.229090617 1
## 14 1.076493168 0
## 15 0.854254673 1
## 16 0.298747112 0
## 17 -0.001638862 0
## 18 1.047002780 1
## 19 -0.456508875 1
## 20 2.965934470 0
## 21 0.437209150 0
## 22 1.467067372 0
## 23 0.783287466 0
## 24 1.165717760 0
## 25 -0.198696160 1
## 26 0.213533342 1
## 27 -0.072493261 1
## 28 0.736487513 1
## 29 -0.625758090 1
## 30 1.375465405 1
## 31 0.264670535 0
## 32 2.972649859 1
## 33 0.215875121 1
## 34 0.782782994 1
## 35 -0.227084853 1
## 36 0.442637449 1
## 37 0.421447969 0
## 38 0.882479555 0
## 39 1.373000995 1
## 40 1.864965592 1
## 41 0.387733146 1
## 42 1.943114799 1
## 43 -1.474856978 0
## 44 1.741072051 1
## 45 0.024847168 1
## 46 1.966803213 1
## 47 0.239605022 0
## 48 2.177764398 1
## 49 1.088997768 1
## 50 -0.964458223 1
## 51 0.715242972 1
## 52 -0.631970427 1
## 53 0.996355205 0
## 54 2.634852773 1
## 55 -1.246686055 1
## 56 1.764940768 0
## 57 -0.173094497 1
## 58 3.188926631 1
## 59 2.321353405 1
## 60 0.149069864 0
## 61 0.842453670 1
## 62 0.903578781 0
## 63 0.542090297 1
## 64 3.532272980 0
## 65 1.088732578 1
## 66 0.144233610 1
## 67 1.470126269 0
## 68 1.537177460 0
## 69 0.708145014 1
## 70 0.751337374 0
## 71 1.535905791 1
## 72 0.146399418 0
## 73 -0.255543077 0
## 74 3.055486628 0
## 75 -1.205682549 1
## 76 1.282809142 1
## 77 0.050654962 1
## 78 2.135029369 1
## 79 1.812166070 1
## 80 -0.886040754 1
## 81 2.206165066 1
## 82 1.037387368 1
## 83 0.083754535 0
## 84 -0.926108918 0
## 85 2.078535519 1
## 86 0.935458616 0
## 87 1.393866742 0
## 88 1.865718680 0
## 89 2.601152645 0
## 90 1.024876085 1
## 91 0.412999035 1
## 92 2.607900007 0
## 93 0.195371813 1
## 94 0.159654048 1
## 95 0.403777090 0
## 96 3.771937632 1
## 97 -0.038425654 1
## 98 1.609367331 0
## 99 -0.135412360 1
## 100 -0.245682938 0
##
## Slot ".units":
## character(0)
##
## Slot ".weights":
## numeric(0)
##
## Slot ".psiFUN_list":
## $`1`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x5590970522c0>
##
## $`2`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559097053750>
##
## $`3`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559097050c60>
##
## $`4`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x55909704c3a0>
##
## $`5`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x55909704a410>
##
## $`6`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x55909704bd00>
##
## $`7`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x5590970496e0>
##
## $`8`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559097046d40>
##
## $`9`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559097048390>
##
## $`10`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559097043c90>
##
## $`11`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x5590970417f8>
##
## $`12`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x55909703cfa8>
##
## $`13`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x55909703e2b0>
##
## $`14`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x55909703ba28>
##
## $`15`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x5590970372b8>
##
## $`16`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559097038a58>
##
## $`17`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x5590970312b8>
##
## $`18`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x5590970328d0>
##
## $`19`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x55909702bf68>
##
## $`20`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559097029638>
##
## $`21`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x55909702add8>
##
## $`22`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x5590970284e0>
##
## $`23`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559097025fa0>
##
## $`24`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x5590970217c0>
##
## $`25`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x55909701f9f0>
##
## $`26`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x5590970211c8>
##
## $`27`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x55909701a908>
##
## $`28`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559097016128>
##
## $`29`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559097013c90>
##
## $`30`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559097015510>
##
## $`31`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559097012ba8>
##
## $`32`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559097010198>
##
## $`33`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x55909700bfd8>
##
## $`34`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x55909700d698>
##
## $`35`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x55909700ab70>
##
## $`36`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559097006588>
##
## $`37`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559097007e40>
##
## $`38`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559097005858>
##
## $`39`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x5590970030b0>
##
## $`40`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096ff89b0>
##
## $`41`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096ffa038>
##
## $`42`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096ff7628>
##
## $`43`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096fe5f20>
##
## $`44`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096fdd970>
##
## $`45`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096fdf180>
##
## $`46`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096fdabd0>
##
## $`47`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096fd6578>
##
## $`48`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096fd3f20>
##
## $`49`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096fd1a50>
##
## $`50`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096fd3228>
##
## $`51`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096fd0fc0>
##
## $`52`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096fcabd0>
##
## $`53`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096fc82d8>
##
## $`54`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096fc9998>
##
## $`55`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096fc7458>
##
## $`56`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096fc29d8>
##
## $`57`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096fc3df8>
##
## $`58`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096fbf500>
##
## $`59`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096fbcaf0>
##
## $`60`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096fbdfb8>
##
## $`61`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096fbb6c0>
##
## $`62`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096fb7420>
##
## $`63`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096fb4930>
##
## $`64`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096fb5df8>
##
## $`65`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096fad7a0>
##
## $`66`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096fa9500>
##
## $`67`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096fa6d58>
##
## $`68`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096fa8338>
##
## $`69`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096fa5960>
##
## $`70`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096fa2ee0>
##
## $`71`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096fa4d10>
##
## $`72`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096f9eaa8>
##
## $`73`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096f9a178>
##
## $`74`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096f97ae8>
##
## $`75`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096f95500>
##
## $`76`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096f96ca0>
##
## $`77`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096f92418>
##
## $`78`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096f8da08>
##
## $`79`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096f8f3a0>
##
## $`80`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096f8b020>
##
## $`81`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096f88808>
##
## $`82`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096f821b0>
##
## $`83`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096f838a8>
##
## $`84`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096f7f020>
##
## $`85`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096f7ad48>
##
## $`86`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096f781e8>
##
## $`87`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096f79950>
##
## $`88`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096f76ed0>
##
## $`89`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096f72320>
##
## $`90`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096f73890>
##
## $`91`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096f6f120>
##
## $`92`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096f6ccc0>
##
## $`93`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096f6e230>
##
## $`94`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096f684d0>
##
## $`95`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096f65cf0>
##
## $`96`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096f61a50>
##
## $`97`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096f62fc0>
##
## $`98`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096f5e7e0>
##
## $`99`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096f57fc8>
##
## $`100`
## function (theta)
## {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x55908c722dd0>
## <environment: 0x559096f59490>
##
##
## Slot ".GFUN":
## function (theta)
## {
## psii <- lapply(psi_list, function(psi) {
## do.call(psi, args = append(list(theta = theta), [email protected]_args))
## })
## compute_sum_of_list(psii, [email protected])
## }
## <environment: 0x559096ecf128>
##
## Slot ".control":
## An object of class "geex_control"
## Slot ".approx":
## An object of class "approx_control"
## Slot ".FUN":
## function ()
## NULL
## <bytecode: 0x55908c7670f0>
##
## Slot ".options":
## list()
##
##
## Slot ".root":
## An object of class "root_control"
## Slot ".object_name":
## [1] "root"
##
## Slot ".FUN":
## function (f, start, maxiter = 100, rtol = 1e-06, atol = 1e-08,
## ctol = 1e-08, useFortran = TRUE, positive = FALSE, jacfunc = NULL,
## jactype = "fullint", verbose = FALSE, bandup = 1, banddown = 1,
## parms = NULL, ...)
## {
## initfunc <- NULL
## if (is.list(f)) {
## if (!is.null(jacfunc) & "jacfunc" %in% names(f))
## stop("If 'f' is a list that contains jacfunc, argument 'jacfunc' should be NULL")
## jacfunc <- f$jacfunc
## initfunc <- f$initfunc
## f <- f$func
## }
## N <- length(start)
## if (!is.numeric(start))
## stop("start conditions should be numeric")
## if (!is.numeric(maxiter))
## stop("`maxiter' must be numeric")
## if (as.integer(maxiter) < 1)
## stop("maxiter must be >=1")
## if (!is.numeric(rtol))
## stop("`rtol' must be numeric")
## if (!is.numeric(atol))
## stop("`atol' must be numeric")
## if (!is.numeric(ctol))
## stop("`ctol' must be numeric")
## if (length(atol) > 1 && length(atol) != N)
## stop("`atol' must either be a scalar, or as long as `start'")
## if (length(rtol) > 1 && length(rtol) != N)
## stop("`rtol' must either be a scalar, or as long as `y'")
## if (length(ctol) > 1)
## stop("`ctol' must be a scalar")
## if (useFortran) {
## if (!is.compiled(f) & is.null(parms)) {
## Fun1 <- function(time = 0, x, parms = NULL) list(f(x,
## ...))
## Fun <- Fun1
## }
## else if (!is.compiled(f)) {
## Fun2 <- function(time = 0, x, parms) list(f(x, parms,
## ...))
## Fun <- Fun2
## }
## else {
## Fun <- f
## f <- function(x, ...) Fun(n = length(start), t = 0,
## x, f = rep(0, length(start)), 1, 1)$f
## }
## JacFunc <- jacfunc
## if (!is.null(jacfunc))
## if (!is.compiled(JacFunc) & is.null(parms))
## JacFunc <- function(time = 0, x, parms = parms) jacfunc(x,
## ...)
## else if (!is.compiled(JacFunc))
## JacFunc <- function(time = 0, x, parms = parms) jacfunc(x,
## parms, ...)
## else JacFunc <- jacfunc
## method <- "stode"
## if (jactype == "sparse") {
## method <- "stodes"
## if (!is.null(jacfunc))
## stop("jacfunc can not be used when jactype='sparse'")
## x <- stodes(y = start, time = 0, func = Fun, atol = atol,
## positive = positive, rtol = rtol, ctol = ctol,
## maxiter = maxiter, verbose = verbose, parms = parms,
## initfunc = initfunc)
## }
## else x <- steady(y = start, time = 0, func = Fun, atol = atol,
## positive = positive, rtol = rtol, ctol = ctol, maxiter = maxiter,
## method = method, jacfunc = JacFunc, jactype = jactype,
## verbose = verbose, parms = parms, initfunc = initfunc,
## bandup = bandup, banddown = banddown)
## precis <- attr(x, "precis")
## attributes(x) <- NULL
## x <- unlist(x)
## if (is.null(parms))
## reffx <- f(x, ...)
## else reffx <- f(x, parms, ...)
## i <- length(precis)
## }
## else {
## if (is.compiled(f))
## stop("cannot combine compiled code with R-implemented solver")
## precis <- NULL
## x <- start
## jacob <- matrix(nrow = N, ncol = N, data = 0)
## if (is.null(parms))
## reffx <- f(x, ...)
## else reffx <- f(x, parms, ...)
## if (length(reffx) != N)
## stop("'f', function must return as many function values as elements in start")
## for (i in 1:maxiter) {
## refx <- x
## pp <- mean(abs(reffx))
## precis <- c(precis, pp)
## ewt <- rtol * abs(x) + atol
## if (max(abs(reffx/ewt)) < 1)
## break
## delt <- perturb(x)
## for (j in 1:N) {
## x[j] <- x[j] + delt[j]
## if (is.null(parms))
## fx <- f(x, ...)
## else fx <- f(x, parms, ...)
## jacob[, j] <- (fx - reffx)/delt[j]
## x[j] <- refx[j]
## }
## relchange <- as.numeric(solve(jacob, -1 * reffx))
## if (max(abs(relchange)) < ctol)
## break
## x <- x + relchange
## if (is.null(parms))
## reffx <- f(x, ...)
## else reffx <- f(x, parms, ...)
## }
## }
## names(x) <- names(start)
## return(list(root = x, f.root = reffx, iter = i, estim.precis = precis[length(precis)]))
## }
## <bytecode: 0x55908c8be3a0>
## <environment: namespace:rootSolve>
##
## Slot ".options":
## $start
## [1] 0 0
##
##
##
## Slot ".deriv":
## An object of class "deriv_control"
## Slot ".FUN":
## function (func, x, method = "Richardson", side = NULL, method.args = list(),
## ...)
## UseMethod("jacobian")
## <bytecode: 0x55908c8b2d78>
## <environment: namespace:numDeriv>
##
## Slot ".options":
## $method
## [1] "Richardson"
##
##
##
##
## Slot ".estFUN":
## function (data)
## {
## Y1 <- data$Y1
## function(theta) {
## c(Y1 - theta[1], (Y1 - theta[1])^2 - theta[2])
## }
## }
## <bytecode: 0x55908c726a88>
##
## Slot ".outer_args":
## list()
##
## Slot ".inner_args":
## list()
##
##
## Slot "rootFUN_results":
## $root
## [1] 5.044563 10.041239
##
## $f.root
## [1] -2.131628e-14 4.654055e-13
##
## $iter
## [1] 4
##
## $estim.precis
## [1] 2.433609e-13
##
##
## Slot "sandwich_components":
## An object of class "sandwich_components"
## Slot ".A":
## [,1] [,2]
## [1,] 1.00000e+02 0
## [2,] -1.65139e-11 100
##
## Slot ".A_i":
## $`1`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -2.752514 1
##
## $`2`
## [,1] [,2]
## [1,] 1.00000 0
## [2,] 10.81578 1
##
## $`3`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -3.842305 1
##
## $`4`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 6.653878 1
##
## $`5`
## [,1] [,2]
## [1,] 1.00000 0
## [2,] -11.75308 1
##
## $`6`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -3.291574 1
##
## $`7`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -6.300465 1
##
## $`8`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -3.043499 1
##
## $`9`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 9.831685 1
##
## $`10`
## [,1] [,2]
## [1,] 1.0000000 0
## [2,] -0.9485972 1
##
## $`11`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 1.291621 1
##
## $`12`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 1.947683 1
##
## $`13`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -5.005397 1
##
## $`14`
## [,1] [,2]
## [1,] 1.00000 0
## [2,] -11.52285 1
##
## $`15`
## [,1] [,2]
## [1,] 1.00000 0
## [2,] -2.73693 1
##
## $`16`
## [,1] [,2]
## [1,] 1.0000000 0
## [2,] 0.9379618 1
##
## $`17`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 8.055833 1
##
## $`18`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -2.133716 1
##
## $`19`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -2.509455 1
##
## $`20`
## [,1] [,2]
## [1,] 1.0000 0
## [2,] 12.8324 1
##
## $`21`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -6.278834 1
##
## $`22`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 3.302893 1
##
## $`23`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -4.760703 1
##
## $`24`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 3.231159 1
##
## $`25`
## [,1] [,2]
## [1,] 1.00000 0
## [2,] -12.45122 1
##
## $`26`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -4.239123 1
##
## $`27`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -2.327459 1
##
## $`28`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 7.970532 1
##
## $`29`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -3.845686 1
##
## $`30`
## [,1] [,2]
## [1,] 1.00000 0
## [2,] 2.29405 1
##
## $`31`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -3.431482 1
##
## $`32`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -6.892173 1
##
## $`33`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 5.423243 1
##
## $`34`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -3.770696 1
##
## $`35`
## [,1] [,2]
## [1,] 1.00000 0
## [2,] 10.69635 1
##
## $`36`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 3.455444 1
##
## $`37`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -1.296536 1
##
## $`38`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 3.555264 1
##
## $`39`
## [,1] [,2]
## [1,] 1.0000000 0
## [2,] -0.4103641 1
##
## $`40`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 3.559842 1
##
## $`41`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -3.356527 1
##
## $`42`
## [,1] [,2]
## [1,] 1.00000 0
## [2,] -17.18108 1
##
## $`43`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 1.165449 1
##
## $`44`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 5.191265 1
##
## $`45`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -7.943802 1
##
## $`46`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -8.998276 1
##
## $`47`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -3.587908 1
##
## $`48`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -4.218017 1
##
## $`49`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 3.262841 1
##
## $`50`
## [,1] [,2]
## [1,] 1.0000000 0
## [2,] 0.9841168 1
##
## $`51`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 8.188365 1
##
## $`52`
## [,1] [,2]
## [1,] 1.0000 0
## [2,] 13.1389 1
##
## $`53`
## [,1] [,2]
## [1,] 1.0000000 0
## [2,] -0.2327012 1
##
## $`54`
## [,1] [,2]
## [1,] 1.0000000 0
## [2,] -0.2827533 1
##
## $`55`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 1.912849 1
##
## $`56`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -2.786123 1
##
## $`57`
## [,1] [,2]
## [1,] 1.0000000 0
## [2,] -0.9959563 1
##
## $`58`
## [,1] [,2]
## [1,] 1.00000 0
## [2,] -0.88019 1
##
## $`59`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 2.023568 1
##
## $`60`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 1.022743 1
##
## $`61`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -2.027283 1
##
## $`62`
## [,1] [,2]
## [1,] 1.0000000 0
## [2,] 0.3831244 1
##
## $`63`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -1.507302 1
##
## $`64`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 6.268315 1
##
## $`65`
## [,1] [,2]
## [1,] 1.0000000 0
## [2,] -0.0352244 1
##
## $`66`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -5.127449 1
##
## $`67`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -2.109045 1
##
## $`68`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -5.612504 1
##
## $`69`
## [,1] [,2]
## [1,] 1.00000 0
## [2,] 1.53121 1
##
## $`70`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 6.681925 1
##
## $`71`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 4.967466 1
##
## $`72`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 1.522182 1
##
## $`73`
## [,1] [,2]
## [1,] 1.0000000 0
## [2,] -0.8176918 1
##
## $`74`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 2.226746 1
##
## $`75`
## [,1] [,2]
## [1,] 1.0000000 0
## [2,] -0.5266062 1
##
## $`76`
## [,1] [,2]
## [1,] 1.00000 0
## [2,] -16.42393 1
##
## $`77`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 2.777827 1
##
## $`78`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -3.069934 1
##
## $`79`
## [,1] [,2]
## [1,] 1.00000 0
## [2,] 10.05734 1
##
## $`80`
## [,1] [,2]
## [1,] 1.00000 0
## [2,] 17.25968 1
##
## $`81`
## [,1] [,2]
## [1,] 1.00000 0
## [2,] -10.00691 1
##
## $`82`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 4.629864 1
##
## $`83`
## [,1] [,2]
## [1,] 1.0000000 0
## [2,] 0.9030276 1
##
## $`84`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -4.278789 1
##
## $`85`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 4.872697 1
##
## $`86`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 5.576646 1
##
## $`87`
## [,1] [,2]
## [1,] 1.0000000 0
## [2,] -0.8347135 1
##
## $`88`
## [,1] [,2]
## [1,] 1.0000 0
## [2,] -2.4507 1
##
## $`89`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -8.775649 1
##
## $`90`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -5.087647 1
##
## $`91`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -1.953179 1
##
## $`92`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -2.095662 1
##
## $`93`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 7.542036 1
##
## $`94`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -2.216907 1
##
## $`95`
## [,1] [,2]
## [1,] 1.00000 0
## [2,] 15.07308 1
##
## $`96`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -3.529053 1
##
## $`97`
## [,1] [,2]
## [1,] 1.00000 0
## [2,] 12.51525 1
##
## $`98`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 1.206403 1
##
## $`99`
## [,1] [,2]
## [1,] 1.00000 0
## [2,] -8.77275 1
##
## $`100`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 4.526372 1
##
##
## Slot ".B":
## [,1] [,2]
## [1,] 1004.1239 366.7969
## [2,] 366.7969 24921.9638
##
## Slot ".B_i":
## $`1`
## [,1] [,2]
## [1,] 1.894083 11.21258
## [2,] 11.212579 66.37615
##
## $`2`
## [,1] [,2]
## [1,] 29.24529 103.8534
## [2,] 103.85343 368.7956
##
## $`3`
## [,1] [,2]
## [1,] 3.690828 12.20011
## [2,] 12.200110 40.32772
##
## $`4`
## [,1] [,2]
## [1,] 11.068524 3.417716
## [2,] 3.417716 1.055315
##
## $`5`
## [,1] [,2]
## [1,] 34.5337 -143.9309
## [2,] -143.9309 599.8807
##
## $`6`
## [,1] [,2]
## [1,] 2.708615 12.06794
## [2,] 12.067937 53.76737
##
## $`7`
## [,1] [,2]
## [1,] 9.9239647 0.36944079
## [2,] 0.3694408 0.01375322
##
## $`8`
## [,1] [,2]
## [1,] 2.315721 11.75630
## [2,] 11.756302 59.68362
##
## $`9`
## [,1] [,2]
## [1,] 24.16551 69.43268
## [2,] 69.43268 199.49496
##
## $`10`
## [,1] [,2]
## [1,] 0.2249591 4.655848
## [2,] 4.6558475 96.359348
##
## $`11`
## [,1] [,2]
## [1,] 0.4170714 -6.21539
## [2,] -6.2153901 92.62460
##
## $`12`
## [,1] [,2]
## [1,] 0.9483677 -8.855017
## [2,] -8.8550173 82.680306
##
## $`13`
## [,1] [,2]
## [1,] 6.263501 9.454541
## [2,] 9.454541 14.271306
##
## $`14`
## [,1] [,2]
## [1,] 33.1940 -133.3929
## [2,] -133.3929 536.0505
##
## $`15`
## [,1] [,2]
## [1,] 1.872697 11.17836
## [2,] 11.178365 66.72508
##
## $`16`
## [,1] [,2]
## [1,] 0.2199431 -4.60600
## [2,] -4.6060002 96.45785
##
## $`17`
## [,1] [,2]
## [1,] 16.22411 24.90410
## [2,] 24.90410 38.22792
##
## $`18`
## [,1] [,2]
## [1,] 1.138186 9.498294
## [2,] 9.498294 79.264346
##
## $`19`
## [,1] [,2]
## [1,] 1.574341 10.62365
## [2,] 10.623649 71.68836
##
## $`20`
## [,1] [,2]
## [1,] 41.16761 199.7130
## [2,] 199.71303 968.8513
##
## $`21`
## [,1] [,2]
## [1,] 9.8559376 0.58173782
## [2,] 0.5817378 0.03433655
##
## $`22`
## [,1] [,2]
## [1,] 2.727275 -12.07862
## [2,] -12.078619 53.49407
##
## $`23`
## [,1] [,2]
## [1,] 5.666072 10.41443
## [2,] 10.414434 19.14208
##
## $`24`
## [,1] [,2]
## [1,] 2.610097 -12.00560
## [2,] -12.005600 55.22187
##
## $`25`
## [,1] [,2]
## [1,] 38.75822 -178.7807
## [2,] -178.78072 824.6650
##
## $`26`
## [,1] [,2]
## [1,] 4.49254 11.76081
## [2,] 11.76081 30.78805
##
## $`27`
## [,1] [,2]
## [1,] 1.354266 10.10929
## [2,] 10.109287 75.46349
##
## $`28`
## [,1] [,2]
## [1,] 15.88235 23.27837
## [2,] 23.27837 34.11854
##
## $`29`
## [,1] [,2]
## [1,] 3.697326 12.19835
## [2,] 12.198350 40.24523
##
## $`30`
## [,1] [,2]
## [1,] 1.315666 -10.00845
## [2,] -10.008449 76.13562
##
## $`31`
## [,1] [,2]
## [1,] 2.943767 12.17742
## [2,] 12.177423 50.37410
##
## $`32`
## [,1] [,2]
## [1,] 11.875512 -6.321063
## [2,] -6.321063 3.364557
##
## $`33`
## [,1] [,2]
## [1,] 7.352891 -7.289782
## [2,] -7.289782 7.227215
##
## $`34`
## [,1] [,2]
## [1,] 3.554538 12.22969
## [2,] 12.229690 42.07729
##
## $`35`
## [,1] [,2]
## [1,] 28.60297 99.27135
## [2,] 99.27135 344.53775
##
## $`36`
## [,1] [,2]
## [1,] 2.985024 -12.19118
## [2,] -12.191179 49.79017
##
## $`37`
## [,1] [,2]
## [1,] 0.4202515 6.236979
## [2,] 6.2369792 92.563397
##
## $`38`
## [,1] [,2]
## [1,] 3.159976 -12.23235
## [2,] -12.232354 47.35178
##
## $`39`
## [,1] [,2]
## [1,] 0.04209968 2.051644
## [2,] 2.05164409 99.982784
##
## $`40`
## [,1] [,2]
## [1,] 3.168118 -12.23361
## [2,] -12.233611 47.23979
##
## $`41`
## [,1] [,2]
## [1,] 2.816568 12.12490
## [2,] 12.124901 52.19587
##
## $`42`
## [,1] [,2]
## [1,] 73.79736 -547.6994
## [2,] -547.69940 4064.8425
##
## $`43`
## [,1] [,2]
## [1,] 0.3395676 -5.65340
## [2,] -5.6533998 94.12242
##
## $`44`
## [,1] [,2]
## [1,] 6.737307 -8.575793
## [2,] -8.575793 10.915967
##
## $`45`
## [,1] [,2]
## [1,] 15.77600 -22.77789
## [2,] -22.77789 32.88746
##
## $`46`
## [,1] [,2]
## [1,] 20.24224 -45.89573
## [2,] -45.89573 104.06051
##
## $`47`
## [,1] [,2]
## [1,] 3.218271 12.24009
## [2,] 12.240091 46.55289
##
## $`48`
## [,1] [,2]
## [1,] 4.447916 11.79636
## [2,] 11.796364 31.28526
##
## $`49`
## [,1] [,2]
## [1,] 2.661533 -12.03940
## [2,] -12.039404 54.46006
##
## $`50`
## [,1] [,2]
## [1,] 0.2421215 -4.821738
## [2,] -4.8217380 96.022702
##
## $`51`
## [,1] [,2]
## [1,] 16.76233 27.51737
## [2,] 27.51737 45.17307
##
## $`52`
## [,1] [,2]
## [1,] 43.15767 217.5567
## [2,] 217.55671 1096.6978
##
## $`53`
## [,1] [,2]
## [1,] 0.01353747 1.166729
## [2,] 1.16672924 100.554795
##
## $`54`
## [,1] [,2]
## [1,] 0.01998735 1.416771
## [2,] 1.41677076 100.425482
##
## $`55`
## [,1] [,2]
## [1,] 0.9147474 -8.728798
## [2,] -8.7287978 83.292847
##
## $`56`
## [,1] [,2]
## [1,] 1.94062 11.28466
## [2,] 11.28466 65.62002
##
## $`57`
## [,1] [,2]
## [1,] 0.2479823 4.876828
## [2,] 4.8768280 95.907875
##
## $`58`
## [,1] [,2]
## [1,] 0.1936836 4.33386
## [2,] 4.3338599 96.97434
##
## $`59`
## [,1] [,2]
## [1,] 1.023707 -9.123794
## [2,] -9.123794 81.315885
##
## $`60`
## [,1] [,2]
## [1,] 0.2615007 -5.001078
## [2,] -5.0010784 95.643278
##
## $`61`
## [,1] [,2]
## [1,] 1.027469 9.13673
## [2,] 9.136730 81.24805
##
## $`62`
## [,1] [,2]
## [1,] 0.03669607 -1.916492
## [2,] -1.91649203 100.090877
##
## $`63`
## [,1] [,2]
## [1,] 0.5679896 7.139522
## [2,] 7.1395221 89.742452
##
## $`64`
## [,1] [,2]
## [1,] 9.8229447 -0.68416849
## [2,] -0.6841685 0.04765236
##
## $`65`
## [,1] [,2]
## [1,] 0.0003101896 0.1768428
## [2,] 0.1768428421 100.8202487
##
## $`66`
## [,1] [,2]
## [1,] 6.572683 8.892421
## [2,] 8.892421 12.030877
##
## $`67`
## [,1] [,2]
## [1,] 1.112018 9.416064
## [2,] 9.416064 79.730991
##
## $`68`
## [,1] [,2]
## [1,] 7.875050 6.078871
## [2,] 6.078871 4.692373
##
## $`69`
## [,1] [,2]
## [1,] 0.5861514 -7.238864
## [2,] -7.2388645 89.398679
##
## $`70`
## [,1] [,2]
## [1,] 11.16203 3.744520
## [2,] 3.74452 1.256172
##
## $`71`
## [,1] [,2]
## [1,] 6.168929 -9.617783
## [2,] -9.617783 14.994783
##
## $`72`
## [,1] [,2]
## [1,] 0.5792591 -7.201425
## [2,] -7.2014253 89.529060
##
## $`73`
## [,1] [,2]
## [1,] 0.167155 4.036979
## [2,] 4.036979 97.497532
##
## $`74`
## [,1] [,2]
## [1,] 1.239600 -9.799509
## [2,] -9.799509 77.468851
##
## $`75`
## [,1] [,2]
## [1,] 0.06932852 2.625635
## [2,] 2.62563494 99.438996
##
## $`76`
## [,1] [,2]
## [1,] 67.43633 -471.3264
## [2,] -471.32637 3294.1968
##
## $`77`
## [,1] [,2]
## [1,] 1.929081 -11.26709
## [2,] -11.267086 65.80710
##
## $`78`
## [,1] [,2]
## [1,] 2.356123 11.79640
## [2,] 11.796397 59.06101
##
## $`79`
## [,1] [,2]
## [1,] 25.28754 76.66866
## [2,] 76.66866 232.44977
##
## $`80`
## [,1] [,2]
## [1,] 74.4741 556.0452
## [2,] 556.0452 4151.5939
##
## $`81`
## [,1] [,2]
## [1,] 25.03456 -75.0184
## [2,] -75.01840 224.7997
##
## $`82`
## [,1] [,2]
## [1,] 5.358911 -10.83927
## [2,] -10.839271 21.92419
##
## $`83`
## [,1] [,2]
## [1,] 0.2038647 -4.44171
## [2,] -4.4417103 96.77393
##
## $`84`
## [,1] [,2]
## [1,] 4.577009 11.69014
## [2,] 11.690144 29.85781
##
## $`85`
## [,1] [,2]
## [1,] 5.935795 -10.00229
## [2,] -10.002293 16.85467
##
## $`86`
## [,1] [,2]
## [1,] 7.774745 -6.319717
## [2,] -6.319717 5.136994
##
## $`87`
## [,1] [,2]
## [1,] 0.1741867 4.118081
## [2,] 4.1180809 97.358719
##
## $`88`
## [,1] [,2]
## [1,] 1.501483 10.46419
## [2,] 10.464191 72.92743
##
## $`89`
## [,1] [,2]
## [1,] 19.2530 -40.41960
## [2,] -40.4196 84.85658
##
## $`90`
## [,1] [,2]
## [1,] 6.471038 9.08196
## [2,] 9.081960 12.74633
##
## $`91`
## [,1] [,2]
## [1,] 0.9537271 8.874769
## [2,] 8.8747688 82.582870
##
## $`92`
## [,1] [,2]
## [1,] 1.097949 9.371054
## [2,] 9.371054 79.982427
##
## $`93`
## [,1] [,2]
## [1,] 14.22058 15.76036
## [2,] 15.76036 17.46687
##
## $`94`
## [,1] [,2]
## [1,] 1.228669 9.768323
## [2,] 9.768323 77.661390
##
## $`95`
## [,1] [,2]
## [1,] 56.79944 352.3951
## [2,] 352.39509 2186.3295
##
## $`96`
## [,1] [,2]
## [1,] 3.113554 12.22408
## [2,] 12.224084 47.99281
##
## $`97`
## [,1] [,2]
## [1,] 39.15787 182.2009
## [2,] 182.20092 847.7780
##
## $`98`
## [,1] [,2]
## [1,] 0.363852 -5.837414
## [2,] -5.837414 93.651817
##
## $`99`
## [,1] [,2]
## [1,] 19.24029 -40.35047
## [2,] -40.35047 84.62246
##
## $`100`
## [,1] [,2]
## [1,] 5.12201 -11.13313
## [2,] -11.13313 24.19881
##
##
## Slot ".ee_i":
## $`1`
## [1] -1.376257 -8.147156
##
## $`2`
## [1] 5.407891 19.204051
##
## $`3`
## [1] -1.921153 -6.350411
##
## $`4`
## [1] 3.326939 1.027285
##
## $`5`
## [1] -5.876538 24.492463
##
## $`6`
## [1] -1.645787 -7.332624
##
## $`7`
## [1] -3.1502325 -0.1172741
##
## $`8`
## [1] -1.521749 -7.725518
##
## $`9`
## [1] 4.915842 14.124269
##
## $`10`
## [1] -0.4742986 -9.8162797
##
## $`11`
## [1] 0.6458107 -9.6241674
##
## $`12`
## [1] 0.9738417 -9.0928712
##
## $`13`
## [1] -2.502699 -3.777738
##
## $`14`
## [1] -5.761424 23.152765
##
## $`15`
## [1] -1.368465 -8.168542
##
## $`16`
## [1] 0.4689809 -9.8212958
##
## $`17`
## [1] 4.027917 6.182873
##
## $`18`
## [1] -1.066858 -8.903053
##
## $`19`
## [1] -1.254727 -8.466898
##
## $`20`
## [1] 6.416199 31.126376
##
## $`21`
## [1] -3.1394168 -0.1853012
##
## $`22`
## [1] 1.651446 -7.313964
##
## $`23`
## [1] -2.380351 -4.375167
##
## $`24`
## [1] 1.615579 -7.431142
##
## $`25`
## [1] -6.22561 28.71698
##
## $`26`
## [1] -2.119561 -5.548698
##
## $`27`
## [1] -1.163730 -8.686972
##
## $`28`
## [1] 3.985266 5.841108
##
## $`29`
## [1] -1.922843 -6.343913
##
## $`30`
## [1] 1.147025 -8.725573
##
## $`31`
## [1] -1.715741 -7.097471
##
## $`32`
## [1] -3.446086 1.834273
##
## $`33`
## [1] 2.711621 -2.688348
##
## $`34`
## [1] -1.885348 -6.486701
##
## $`35`
## [1] 5.348174 18.561728
##
## $`36`
## [1] 1.727722 -7.056215
##
## $`37`
## [1] -0.6482681 -9.6209873
##
## $`38`
## [1] 1.777632 -6.881263
##
## $`39`
## [1] -0.2051821 -9.9991392
##
## $`40`
## [1] 1.779921 -6.873121
##
## $`41`
## [1] -1.678263 -7.224671
##
## $`42`
## [1] -8.590539 63.756117
##
## $`43`
## [1] 0.5827243 -9.7016712
##
## $`44`
## [1] 2.595632 -3.303932
##
## $`45`
## [1] -3.971901 5.734759
##
## $`46`
## [1] -4.499138 10.201005
##
## $`47`
## [1] -1.793954 -6.822968
##
## $`48`
## [1] -2.109008 -5.593323
##
## $`49`
## [1] 1.631421 -7.379706
##
## $`50`
## [1] 0.4920584 -9.7991174
##
## $`51`
## [1] 4.094182 6.721091
##
## $`52`
## [1] 6.56945 33.11643
##
## $`53`
## [1] -0.1163506 -10.0277014
##
## $`54`
## [1] -0.1413766 -10.0212515
##
## $`55`
## [1] 0.9564243 -9.1264915
##
## $`56`
## [1] -1.393061 -8.100619
##
## $`57`
## [1] -0.4979782 -9.7932566
##
## $`58`
## [1] -0.440095 -9.847555
##
## $`59`
## [1] 1.011784 -9.017532
##
## $`60`
## [1] 0.5113714 -9.7797382
##
## $`61`
## [1] -1.013641 -9.013770
##
## $`62`
## [1] 0.1915622 -10.0045428
##
## $`63`
## [1] -0.7536508 -9.4732493
##
## $`64`
## [1] 3.1341577 -0.2182942
##
## $`65`
## [1] -0.0176122 -10.0409287
##
## $`66`
## [1] -2.563725 -3.468555
##
## $`67`
## [1] -1.054522 -8.929221
##
## $`68`
## [1] -2.806252 -2.166189
##
## $`69`
## [1] 0.7656052 -9.4550875
##
## $`70`
## [1] 3.340962 1.120791
##
## $`71`
## [1] 2.483733 -3.872310
##
## $`72`
## [1] 0.7610908 -9.4619797
##
## $`73`
## [1] -0.4088459 -9.8740839
##
## $`74`
## [1] 1.113373 -8.801639
##
## $`75`
## [1] -0.2633031 -9.9719103
##
## $`76`
## [1] -8.211963 57.395094
##
## $`77`
## [1] 1.388914 -8.112158
##
## $`78`
## [1] -1.534967 -7.685116
##
## $`79`
## [1] 5.028672 15.246303
##
## $`80`
## [1] 8.629838 64.432864
##
## $`81`
## [1] -5.003455 14.993320
##
## $`82`
## [1] 2.314932 -4.682328
##
## $`83`
## [1] 0.4515138 -9.8373741
##
## $`84`
## [1] -2.139394 -5.464230
##
## $`85`
## [1] 2.436349 -4.105444
##
## $`86`
## [1] 2.788323 -2.266494
##
## $`87`
## [1] -0.4173568 -9.8670522
##
## $`88`
## [1] -1.225350 -8.539756
##
## $`89`
## [1] -4.387824 9.211763
##
## $`90`
## [1] -2.543824 -3.570200
##
## $`91`
## [1] -0.9765895 -9.0875118
##
## $`92`
## [1] -1.047831 -8.943289
##
## $`93`
## [1] 3.771018 4.179338
##
## $`94`
## [1] -1.108453 -8.812570
##
## $`95`
## [1] 7.53654 46.75820
##
## $`96`
## [1] -1.764527 -6.927685
##
## $`97`
## [1] 6.257625 29.116627
##
## $`98`
## [1] 0.6032015 -9.6773869
##
## $`99`
## [1] -4.386375 9.199047
##
## $`100`
## [1] 2.263186 -4.919229
##
##
##
## Slot "GFUN":
## function ()
## NULL
## <bytecode: 0x55908c900ce0>
##
## Slot "corrections":
## list()
##
## Slot "estimates":
## [1] 5.044563 10.041239
##
## Slot "vcov":
## [,1] [,2]
## [1,] 0.10041239 0.03667969
## [2,] 0.03667969 2.49219638