--- title: "Additional calculus of M-estimation examples using `geex`" author: "Bradley Saul" date: "`r Sys.Date()`" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Calculus of M-estimation examples using geex} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} references: - id: stefanski2002 author: - family: Stefanski given: Len A. - family: Boos given: Dennis D. container-title: The calculus of M-estimation type: article-journal URL: 'http://www.jstor.org/stable/3087324' DOI: 10.1198/000313002753631330 journal: The American Statistician issued: year: 2002 volume: 56 number: 1 pages: 29-38 - id: huber1964 author: - family: Huber given: Peter J. container-title: Robust estimation of a location parameter journal: The Annals of Mathematical Statistics type: article-journal volume: 35 number: 1 pages: 73-101 issued: year: 1964 --- ## Preliminaries This vignette implements examples from and is meant to read with @stefanski2002 (SB). Examples 4-9 use the `geexex` data set. For information on how the data are generated, run `help('geexex')`. ```{r, echo = TRUE} library(geex) ``` ## The Basic Approach ### Example 4: Instrumental variables Example 4 calculates an instumental variable estimator. The variables ($Y_3, W_1, Z_1$) are observed according to: \[ Y_{3i} = \alpha + \beta X_{1i} + \sigma_{\epsilon}\epsilon_{1, i} \] \[ W_{1i} =\beta X_{1i} + \sigma_{U}\epsilon_{2, i} \] and \[ Z_{1i} = \gamma + \delta X_{1i} + \sigma_{\tau}\epsilon_{3, i}. \] $Y_3$ is a linear function of a latent variable $X_1$, whose coefficient $\beta$ is of interest. $W_1$ is a measurement of the unobserved $X_1$, and $Z_1$ is an instrumental variable for $X_1$. The instrumental variable estimator is $\hat{\beta}_{IV}$ is the ratio of least squares regression slopes of $Y_3$ on $Z_1$ and $Y_3$ and $W_1$. The $\psi$ function below includes this estimator as $\hat{\theta}_4 = \hat{\beta}_{IV}$. In the example data, 100 observations are generated where $X_1 \sim \Gamma(\text{shape} = 5, \text{rate} = 1)$, $\alpha = 2$, $\beta = 3$, $\gamma = 2$, $\delta = 1.5$, $\sigma_{\epsilon} = \sigma_{\tau} = 1$, $\sigma_U = .25$, and $\epsilon_{\cdot, i} \sim N(0,1)$. \[ \psi(Y_{3i}, Z_{1i}, W_{1i}, \mathbf{\theta}) = \begin{pmatrix} \theta_1 - Z_{1i} \\ \theta_2 - W_{1i} \\ (Y_{3i} - \theta_3 W_{1i})(\theta_2 - W_{1i}) \\ (Y_{3i} - \theta_4 W_{1i})(\theta_1 - Z_{1i}) \\ \end{pmatrix} \] ```{r SB4_estFUN, echo = TRUE} SB4_estFUN <- function(data){ Z1 <- data$Z1; W1 <- data$W1; Y3 <- data$Y3 function(theta){ c(theta[1] - Z1, theta[2] - W1, (Y3 - (theta[3] * W1)) * (theta[2] - W1), (Y3 - (theta[4] * W1)) * (theta[1] - Z1) ) } } ``` ```{r SB4_run, echo = TRUE, message=FALSE} estimates <- m_estimate( estFUN = SB4_estFUN, data = geexex, root_control = setup_root_control(start = c(1, 1, 1, 1))) ``` The R packages [`AER`](https://cran.r-project.org/package=AER) and [`ivpack`](https://cran.r-project.org/package=ivpack) can compute the IV estimator and sandwich variance estimators respectively, which is done below for comparison. ```{r SB4_clsform, echo = TRUE, eval = FALSE, message = FALSE, results = 'hide'} ivfit <- AER::ivreg(Y3 ~ W1 | Z1, data = geexex) iv_se <- ivpack::cluster.robust.se(ivfit, clusterid = 1:nrow(geexex)) ``` ```{r SB4_results, eval = FALSE, echo = TRUE} coef(ivfit)[2] coef(estimates)[4] iv_se[2, 'Std. Error'] sqrt(vcov(estimates)[4, 4]) ``` ## Connections to the Influence Curve ### Example 5: Hodges-Lehmann estimator This example shows the link between the influence curves and the Hodges-Lehman estimator. \[ \psi(Y_{2i}, \theta) = \begin{pmatrix} IC_{\hat{\theta}_{HL}}(Y_2; \theta_0) - (\theta_1 - \theta_0) \\ \end{pmatrix} \] The functions used in `SB5_estFUN` are defined below: ```{r SB5_internals, echo = TRUE} F0 <- function(y, theta0, distrFUN = pnorm){ distrFUN(y - theta0, mean = 0) } f0 <- function(y, densFUN){ densFUN(y, mean = 0) } integrand <- function(y, densFUN = dnorm){ f0(y, densFUN = densFUN)^2 } IC_denom <- integrate(integrand, lower = -Inf, upper = Inf)$value ``` ```{r SB5_estFUN, echo = TRUE} SB5_estFUN <- function(data){ Yi <- data[['Y2']] function(theta){ (1/IC_denom) * (F0(Yi, theta[1]) - 0.5) } } ``` ```{r SB5_run, echo = TRUE, message=FALSE} estimates <- m_estimate( estFUN = SB5_estFUN, data = geexex, root_control = setup_root_control(start = 2)) ``` The `hc.loc` of the [`ICSNP`](https://cran.r-project.org/package=ICSNP) package computes the Hodges-Lehman estimator and SB gave closed form estimators for the variance. ```{r SB5_clsform, echo = TRUE} theta_cls <- ICSNP::hl.loc(geexex$Y2) Sigma_cls <- 1/(12 * IC_denom^2) / nrow(geexex) ``` ```{r SB5_results, echo = FALSE} results <- list(geex = list(parameters = coef(estimates), vcov = vcov(estimates)), cls = list(parameters = theta_cls, vcov = Sigma_cls)) results ``` ## Non-smooth $\psi$ functions ### Example 6: Huber center of symmetry estimator This example illustrates estimation with nonsmooth $\psi$ function for computing the @huber1964 estimator of the center of symmetric distributions. \[ \psi_k(Y_{1i}, \theta) = \begin{cases} (Y_{1i} - \theta) & \text{when } |(Y_{1i} - \theta)| \leq k \\ k * sgn(Y_{1i} - \theta) & \text{when } |(Y_{1i} - \theta)| > k\\ \end{cases} \] ```{r SB6_estFUN, echo = TRUE} SB6_estFUN <- function(data, k = 1.5){ Y1 <- data$Y1 function(theta){ x <- Y1 - theta[1] if(abs(x) <= k) x else sign(x) * k } } ``` ```{r SB6_run, echo = TRUE, message=FALSE} estimates <- m_estimate( estFUN = SB6_estFUN, data = geexex, root_control = setup_root_control(start = 3)) ``` The point estimate from `geex` is compared to the estimate obtained from the `huber` function in the [`MASS`](https://cran.r-project.org/package=MASS) package. The variance estimate is compared to an estimator suggested by SB: $A_m = \sum_i [-\psi'(Y_i - \hat{\theta})]/m$ and $B_m = \sum_i \psi_k^2(Y_i - \hat{\theta})/m$, where $\psi_k'$ is the derivative of $\psi$ where is exists. ```{r SB6_clsform, echo = TRUE} theta_cls <- MASS::huber(geexex$Y1, k = 1.5, tol = 1e-10)$mu psi_k <- function(x, k = 1.5){ if(abs(x) <= k) x else sign(x) * k } A <- mean(unlist(lapply(geexex$Y1, function(y){ x <- y - theta_cls -numDeriv::grad(psi_k, x = x) }))) B <- mean(unlist(lapply(geexex$Y1, function(y){ x <- y - theta_cls psi_k(x = x)^2 }))) ## closed form covariance Sigma_cls <- matrix(1/A * B * 1/A / nrow(geexex)) ``` ```{r SB6_results, echo = TRUE} results <- list(geex = list(parameters = coef(estimates), vcov = vcov(estimates)), cls = list(parameters = theta_cls, vcov = Sigma_cls)) results ``` ### Example 7: Sample quantiles (approximation of $\psi$) *Approximation of $\psi$ with geex is EXPERIMENTAL.* Example 7 illustrates calculation of sample quantiles using M-estimation and approximation of the $\psi$ function. \[ \psi(Y_{1i}, \theta) = \begin{pmatrix} 0.5 - I(Y_{1i} \leq \theta_1) \\ \end{pmatrix} \] ```{r SB7_estFUN, echo = TRUE} SB7_estFUN <- function(data){ Y1 <- data$Y1 function(theta){ 0.5 - (Y1 <= theta[1]) } } ``` Note that $\psi$ is not differentiable; however, `geex` includes the ability to approximate the $\psi$ function via an `approx_control` object. The `FUN` in an `approx_control` must be a function that takes in the $\psi$ function, modifies it, and returns a function of `theta`. For this example, I approximate $\psi$ with a spline function. The `eval_theta` argument is used to modify the basis of the spline. ```{r approx} spline_approx <- function(psi, eval_theta){ y <- Vectorize(psi)(eval_theta) f <- splinefun(x = eval_theta, y = y) function(theta) f(theta) } ``` ```{r SB7_run, echo = TRUE, message=FALSE} estimates <- m_estimate( estFUN = SB7_estFUN, data = geexex, root_control = setup_root_control(start = 4.7), approx_control = setup_approx_control(FUN = spline_approx, eval_theta = seq(3, 6, by = .05))) ``` A comparison of the variance is not obvious, so no comparison is made. ```{r SB7_results, echo = FALSE} results <- list(geex = list(parameters = coef(estimates), vcov = vcov(estimates)), cls = list(parameters = median(geexex$Y1), vcov = NA)) results ``` ## Regression M-estimators ### Example 8: Robust regression Example 8 demonstrates robust regression for estimating $\beta$ from 100 observations generated from $Y_4 = 0.1 + 0.1 X_{1i} + 0.5 X_{2i} + \epsilon_i$, where $\epsilon_i \sim N(0, 1)$, $X_1$ is defined as above, and the first half of the observation have $X_{2i} = 1$ and the others have $X_{2i} = 0$. \[ \psi_k(Y_{4i}, \theta) = \begin{pmatrix} \psi_k(Y_{4i} - \mathbf{x}_i^T \beta) \mathbf{x}_i \end{pmatrix} \] ```{r SB8_estFUN, echo = TRUE} psi_k <- function(x, k = 1.345){ if(abs(x) <= k) x else sign(x) * k } SB8_estFUN <- function(data){ Yi <- data$Y4 xi <- model.matrix(Y4 ~ X1 + X2, data = data) function(theta){ r <- Yi - xi %*% theta c(psi_k(r) %*% xi) } } ``` ```{r SB8_run, echo = TRUE, message = FALSE} estimates <- m_estimate( estFUN = SB8_estFUN, data = geexex, root_control = setup_root_control(start = c(0, 0, 0))) ``` ```{r SB8_clsform, echo = TRUE} m <- MASS::rlm(Y4 ~ X1 + X2, data = geexex, method = 'M') theta_cls <- coef(m) Sigma_cls <- vcov(m) ``` ```{r SB8_results, echo = TRUE} results <- list(geex = list(parameters = coef(estimates), vcov = vcov(estimates)), cls = list(parameters = theta_cls, vcov = Sigma_cls)) results ``` ### Example 9: Generalized linear models Example 9 illustrates estimation of a generalized linear model. \[ \psi(Y_i, \theta) = \begin{pmatrix} D_i(\beta)\frac{Y_i - \mu_i(\beta)}{V_i(\beta) \tau} \end{pmatrix} \] ```{r SB9_estFUN, echo = TRUE} SB9_estFUN <- function(data){ Y <- data$Y5 X <- model.matrix(Y5 ~ X1 + X2, data = data, drop = FALSE) function(theta){ lp <- X %*% theta mu <- plogis(lp) D <- t(X) %*% dlogis(lp) V <- mu * (1 - mu) D %*% solve(V) %*% (Y - mu) } } ``` ```{r SB9_run, echo = TRUE, message = FALSE} estimates <- m_estimate( estFUN = SB9_estFUN, data = geexex, root_control = setup_root_control(start = c(.1, .1, .5))) ``` Compare point estimates to `glm` coefficients and covariance matrix to `sandwich`. ```{r SB9_clsform, echo = TRUE} m9 <- glm(Y5 ~ X1 + X2, data = geexex, family = binomial(link = 'logit')) theta_cls <- coef(m9) Sigma_cls <- sandwich::sandwich(m9) ``` ```{r SB9_results, echo = TRUE} results <- list(geex = list(parameters = coef(estimates), vcov = vcov(estimates)), cls = list(parameters = theta_cls, vcov = Sigma_cls)) results ``` ## Application to test statistics ### Example 10: Testing equality of success probabilities ```{r SB10_setup, echo=FALSE} shaq <- data.frame( game = 1:23, ft_made = c(4, 5, 5, 5, 2, 7, 6, 9, 4, 1, 13, 5, 6, 9, 7, 3, 8, 1, 18, 3, 10, 1, 3), ft_attp = c(5, 11, 14, 12, 7, 10, 14, 15, 12, 4, 27, 17, 12, 9, 12, 10, 12, 6, 39, 13, 17, 6, 12)) ``` Example 10 illustrates testing equality of success probablities. \[ \psi(Y_i, n_i, \theta) = \begin{pmatrix} \frac{(Y_i - n_i \theta_2)^2}{n_i \theta_2( 1 - \theta_2 )} - \theta_1 \\ Y_i - n_i \theta_2 \end{pmatrix} \] ```{r SB10_estFUN, echo = TRUE} SB10_estFUN <- function(data){ Y <- data$ft_made n <- data$ft_attp function(theta){ p <- theta[2] c(((Y - (n * p))^2)/(n * p * (1 - p)) - theta[1], Y - n * p) } } ``` ```{r SB10_run, echo = TRUE} estimates <- m_estimate( estFUN = SB10_estFUN, data = shaq, units = 'game', root_control = setup_root_control(start = c(.5, .5))) ``` ```{r SB10_clsform, echo = TRUE} V11 <- function(p) { k <- nrow(shaq) sumn <- sum(shaq$ft_attp) sumn_inv <- sum(1/shaq$ft_attp) term2_n <- 1 - (6 * p) + (6 * p^2) term2_d <- p * (1 - p) term2 <- term2_n/term2_d term3 <- ((1 - (2 * p))^2) / ((sumn/k) * p * (1 - p)) 2 + (term2 * (1/k) * sumn_inv) - term3 } p_tilde <- sum(shaq$ft_made)/sum(shaq$ft_attp) V11_hat <- V11(p_tilde)/23 # Compare variance estimates V11_hat vcov(estimates)[1, 1] # Note the differences in the p-values pnorm(35.51/23, mean = 1, sd = sqrt(V11_hat), lower.tail = FALSE) pnorm(coef(estimates)[1], mean = 1, sd = sqrt(vcov(estimates)[1, 1]), lower.tail = FALSE) ``` This example shows that the empircal sandwich variance estimator may be different from other sandwich variance estimators that make assumptions about the structure of the $A$ and $B$ matrices. ## References